#ifndef LINMATH_H #define LINMATH_H /* Credit : https://github.com/datenwolf/linmath.h */ #include "../include/kazmath/kazmath/kazmath.h" #include "../include/kazmath/kazmath/vec4.h" #include /* Just for convenience & consistency */ typedef kmVec2 vec2; typedef kmVec3 vec3; typedef struct kmVec4 vec4; typedef kmMat3 mat3; typedef kmMat4 mat4; typedef kmQuaternion quat; /* vec3 */ #define vec3_fill kmVec3Fill #define vec3_add kmVec3Add #define vec3_assign kmVec3Assign #define vec3_norm kmVec3Normalize #define vec3_mul kmVec3Mul #define vec3_mul_mat4 kmVec3MultiplyMat4 #define vec3_mul_mat3 kmVec3MultiplyMat3 #define vec3_scale kmVec3Scale #define vec3_equals kmVec3Equals #define vec3_transform kmVec3Transform #define vec3_transform_norm kmVec3TransformNormal #define vec3_len kmVec3Length /* vec4 */ #define vec4_fill kmVec4Fill #define vec4_add kmVec4Add #define vec4_assign kmVec4Assign #define vec4_norm kmVec4Normalize #define vec4_mul kmVec4Mul #define vec4_mul_mat4 kmVec4MultiplyMat4 #define vec4_scale kmVec4Scale #define vec4_equals kmVec4Equals #define vec4_transform kmVec4Transform #define vec4_transform_norm kmVec4TransformNormal #define vec4_len kmVec4Length /* mat4 */ #define mat4_identity kmMat4Identity #define mat4_mul kmMat4Multiply #define mat4_lookat kmMat4LookAt #define mat4_perspective kmMat4PerspectiveProjection #define mat4_ortho kmMat4OrthographicProjection #define mat4_scale kmMat4Scaling #define mat4_translate kmMat4Translation #define mat4_from_quat kmMat4RotationQuaternion #define mat4_rot_x kmMat4RotationX #define mat4_rot_y kmMat4RotationY #define mat4_rot_z kmMat4RotationZ /* quat */ #define quat_identity kmQuaternionIdentity #define quat_mul_vec3 kmQuaternionMultiplyVec3 #define quat_mul kmQuaternionMultiply #define quat_axis_angle kmQuaternionRotationAxisAngle #define quat_get_forward_rh kmQuaternionGetForwardVec3RH #define quat_get_forward_lh kmQuaternionGetForwardVec3LH #define quat_get_up kmQuaternionGetUpVec3 #define quat_get_right kmQuaternionGetRightVec3 #define M_PI 3.14159265358979323846 #define TO_RADIANS(degrees) ((degrees * M_PI) / 180.0) #define TO_DEGREES(radians) ((radians * 180.0) / M_PI) /* #define LINMATH_H_DEFINE_VEC(n) \ */ /* typedef float vec##n[n]; \ */ /* static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ */ /* { \ */ /* int i; \ */ /* for(i=0; i 1e-4) { */ /* vec3_norm(u, u); */ /* mat4 T; */ /* mat4_from_vec3_mul_outer(T, u, u); */ /* mat4 S = { */ /* { 0, u[2], -u[1], 0}, */ /* {-u[2], 0, u[0], 0}, */ /* { u[1], -u[0], 0, 0}, */ /* { 0, 0, 0, 0} */ /* }; */ /* mat4_scale(S, S, s); */ /* mat4 C; */ /* mat4_identity(C); */ /* mat4_sub(C, C, T); */ /* mat4_scale(C, C, c); */ /* mat4_add(T, T, C); */ /* mat4_add(T, T, S); */ /* T[3][3] = 1.; */ /* mat4_mul(R, M, T); */ /* } else { */ /* mat4_dup(R, M); */ /* } */ /* } */ /* static inline void mat4_rotate_X(mat4 Q, mat4 M, float angle) */ /* { */ /* float s = sinf(angle); */ /* float c = cosf(angle); */ /* mat4 R = { */ /* {1.f, 0.f, 0.f, 0.f}, */ /* {0.f, c, s, 0.f}, */ /* {0.f, -s, c, 0.f}, */ /* {0.f, 0.f, 0.f, 1.f} */ /* }; */ /* mat4_mul(Q, M, R); */ /* } */ /* static inline void mat4_rotate_Y(mat4 Q, mat4 M, float angle) */ /* { */ /* float s = sinf(angle); */ /* float c = cosf(angle); */ /* mat4 R = { */ /* { c, 0.f, s, 0.f}, */ /* { 0.f, 1.f, 0.f, 0.f}, */ /* { -s, 0.f, c, 0.f}, */ /* { 0.f, 0.f, 0.f, 1.f} */ /* }; */ /* mat4_mul(Q, M, R); */ /* } */ /* static inline void mat4_rotate_Z(mat4 Q, mat4 M, float angle) */ /* { */ /* float s = sinf(angle); */ /* float c = cosf(angle); */ /* mat4 R = { */ /* { c, s, 0.f, 0.f}, */ /* { -s, c, 0.f, 0.f}, */ /* { 0.f, 0.f, 1.f, 0.f}, */ /* { 0.f, 0.f, 0.f, 1.f} */ /* }; */ /* mat4_mul(Q, M, R); */ /* } */ /* static inline void mat4_invert(mat4 T, mat4 M) */ /* { */ /* float s[6]; */ /* float c[6]; */ /* s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; */ /* s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2]; */ /* s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3]; */ /* s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2]; */ /* s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3]; */ /* s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3]; */ /* c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1]; */ /* c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2]; */ /* c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3]; */ /* c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2]; */ /* c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3]; */ /* c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; */ /* /\* Assumes it is invertible *\/ */ /* float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); */ /* T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; */ /* T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; */ /* T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; */ /* T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; */ /* T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; */ /* T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; */ /* T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; */ /* T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; */ /* T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; */ /* T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; */ /* T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; */ /* T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; */ /* T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; */ /* T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; */ /* T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; */ /* T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; */ /* } */ /* static inline void mat4_orthonormalize(mat4 R, mat4 M) */ /* { */ /* mat4_dup(R, M); */ /* float s = 1.; */ /* vec3 h; */ /* vec3_norm(R[2], R[2]); */ /* s = vec3_mul_inner(R[1], R[2]); */ /* vec3_scale(h, R[2], s); */ /* vec3_sub(R[1], R[1], h); */ /* vec3_norm(R[2], R[2]); */ /* s = vec3_mul_inner(R[1], R[2]); */ /* vec3_scale(h, R[2], s); */ /* vec3_sub(R[1], R[1], h); */ /* vec3_norm(R[1], R[1]); */ /* s = vec3_mul_inner(R[0], R[1]); */ /* vec3_scale(h, R[1], s); */ /* vec3_sub(R[0], R[0], h); */ /* vec3_norm(R[0], R[0]); */ /* } */ /* static inline void mat4_frustum(mat4 M, float l, float r, float b, float t, float n, float f) */ /* { */ /* M[0][0] = 2.f*n/(r-l); */ /* M[0][1] = M[0][2] = M[0][3] = 0.f; */ /* M[1][1] = 2.*n/(t-b); */ /* M[1][0] = M[1][2] = M[1][3] = 0.f; */ /* M[2][0] = (r+l)/(r-l); */ /* M[2][1] = (t+b)/(t-b); */ /* M[2][2] = -(f+n)/(f-n); */ /* M[2][3] = -1.f; */ /* M[3][2] = -2.f*(f*n)/(f-n); */ /* M[3][0] = M[3][1] = M[3][3] = 0.f; */ /* } */ /* static inline void mat4_ortho(mat4 M, float l, float r, float b, float t, float n, float f) */ /* { */ /* M[0][0] = 2.f/(r-l); */ /* M[0][1] = M[0][2] = M[0][3] = 0.f; */ /* M[1][1] = 2.f/(t-b); */ /* M[1][0] = M[1][2] = M[1][3] = 0.f; */ /* M[2][2] = -2.f/(f-n); */ /* M[2][0] = M[2][1] = M[2][3] = 0.f; */ /* M[3][0] = -(r+l)/(r-l); */ /* M[3][1] = -(t+b)/(t-b); */ /* M[3][2] = -(f+n)/(f-n); */ /* M[3][3] = 1.f; */ /* } */ /* static inline void mat4_perspective(mat4 m, float y_fov, float aspect, float n, float f) */ /* { */ /* /\* NOTE: Degrees are an unhandy unit to work with. */ /* * linmath.h uses radians for everything! *\/ */ /* float const a = 1.f / tan(y_fov / 2.f); */ /* m[0][0] = a / aspect; */ /* m[0][1] = 0.f; */ /* m[0][2] = 0.f; */ /* m[0][3] = 0.f; */ /* m[1][0] = 0.f; */ /* m[1][1] = a; */ /* m[1][2] = 0.f; */ /* m[1][3] = 0.f; */ /* m[2][0] = 0.f; */ /* m[2][1] = 0.f; */ /* m[2][2] = -((f + n) / (f - n)); */ /* m[2][3] = -1.f; */ /* m[3][0] = 0.f; */ /* m[3][1] = 0.f; */ /* m[3][2] = -((2.f * f * n) / (f - n)); */ /* m[3][3] = 0.f; */ /* } */ /* static inline void mat4_look_at(mat4 m, vec3 eye, vec3 lookat, vec3 up) */ /* { */ /* /\* Adapted from Android's OpenGL Matrix.java. *\/ */ /* /\* See the OpenGL GLUT documentation for gluLookAt for a description *\/ */ /* /\* of the algorithm. We implement it in a straightforward way: *\/ */ /* /\* TODO: The negation of of can be spared by swapping the order of */ /* * operands in the following cross products in the right way. *\/ */ /* vec3 f; */ /* vec3_sub(f, lookat, eye); */ /* vec3_norm(f, f); */ /* vec3 s; */ /* vec3_mul_cross(s, f, up); */ /* vec3_norm(s, s); */ /* vec3 t; */ /* vec3_mul_cross(t, s, f); */ /* m[0][0] = s[0]; */ /* m[1][0] = s[1]; */ /* m[2][0] = s[2]; */ /* m[0][1] = t[0]; */ /* m[1][1] = t[1]; */ /* m[2][1] = t[2]; */ /* m[0][2] = -f[0]; */ /* m[1][2] = -f[1]; */ /* m[2][2] = -f[2]; */ /* m[0][3] = 0.f; */ /* m[1][3] = 0.f; */ /* m[2][3] = 0.f; */ /* m[3][0] = -vec3_mul_inner(s, eye); */ /* m[3][1] = -vec3_mul_inner(t, eye); */ /* m[3][2] = vec3_mul_inner(f, eye); */ /* m[3][3] = 1.f; */ /* //mat4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); */ /* } */ /* typedef float quat[4]; */ /* static inline void quat_identity(quat q) */ /* { */ /* q[0] = q[1] = q[2] = 0.f; */ /* q[3] = 1.f; */ /* } */ /* static inline void quat_add(quat r, quat a, quat b) */ /* { */ /* int i; */ /* for(i=0; i<4; ++i) */ /* r[i] = a[i] + b[i]; */ /* } */ /* static inline void quat_sub(quat r, quat a, quat b) */ /* { */ /* int i; */ /* for(i=0; i<4; ++i) */ /* r[i] = a[i] - b[i]; */ /* } */ /* static inline void quat_mul(quat r, quat p, quat q) */ /* { */ /* /\* vec3 w; *\/ */ /* /\* vec3_mul_cross(r, p, q); *\/ */ /* /\* vec3_scale(w, p, q[3]); *\/ */ /* /\* vec3_add(r, r, w); *\/ */ /* /\* vec3_scale(w, q, p[3]); *\/ */ /* /\* vec3_add(r, r, w); *\/ */ /* /\* r[3] = p[3]*q[3] - vec3_mul_inner(p, q); *\/ */ /* r[0] = (p[3] * q[0]) + (p[0] * q[3]) + (p[1] * q[2]) - (p[2] * q[1]); */ /* r[1] = (p[3] * q[1]) + (p[1] * q[3]) + (p[2] * q[0]) - (p[0] * q[2]); */ /* r[2] = (p[3] * q[2]) + (p[2] * q[3]) + (p[0] * q[1]) - (p[1] * q[0]); */ /* r[3] = (p[3] * q[3]) - (p[0] * q[0]) - (p[1] * q[1]) - (p[2] * q[2]); */ /* } */ /* static inline void quat_scale(quat r, quat v, float s) */ /* { */ /* int i; */ /* for(i=0; i<4; ++i) */ /* r[i] = v[i] * s; */ /* } */ /* static inline float quat_inner_product(quat a, quat b) */ /* { */ /* float p = 0.f; */ /* int i; */ /* for(i=0; i<4; ++i) */ /* p += b[i]*a[i]; */ /* return p; */ /* } */ /* static inline void quat_conj(quat r, quat q) */ /* { */ /* int i; */ /* for(i=0; i<3; ++i) */ /* r[i] = -q[i]; */ /* r[3] = q[3]; */ /* } */ /* static inline void quat_rotate(quat r, float angle, vec3 axis) { */ /* vec3 v; */ /* vec3_scale(v, axis, sinf(angle / 2.f)); */ /* int i; */ /* for(i=0; i<3; ++i) */ /* r[i] = v[i]; */ /* r[3] = cosf(angle / 2.f); */ /* } */ /* #define quat_norm vec4_norm */ /* static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) */ /* { */ /* /\* */ /* * Method by Fabian 'ryg' Giessen (of Farbrausch) */ /* t = 2 * cross(q.xyz, v) */ /* v' = v + q.w * t + cross(q.xyz, t) */ /* *\/ */ /* vec3 t = {q[0], q[1], q[2]}; */ /* vec3 u = {q[0], q[1], q[2]}; */ /* vec3_mul_cross(t, t, v); */ /* vec3_scale(t, t, 2.f); */ /* vec3_mul_cross(u, u, t); */ /* vec3_scale(t, t, q[3]); */ /* vec3_add(r, v, t); */ /* vec3_add(r, r, u); */ /* } */ /* static inline float quat_pitch(quat q) */ /* { */ /* float result = atan2(2 * (q[1] * q[2] + q[3] * q[0]), q[3] * q[3] - q[0] * q[0] - q[1] * q[1] + q[2] * q[2]); */ /* return result; */ /* } */ /* static inline float quat_yaw(quat q) */ /* { */ /* float result = asin(-2 * (q[0] * q[2] - q[3] * q[1])); */ /* return result; */ /* } */ /* static inline float quat_roll(quat q) */ /* { */ /* float result = atan2(2 * (q[0] * q[1] + q[3] * q[2]), q[3] * q[3] + q[0] * q[0] - q[1] * q[1] - q[2] * q[2]); */ /* return result; */ /* } */ /* static inline void mat4_from_quat(mat4 M, quat q) */ /* { */ /* /\* float a = q[3]; *\/ */ /* /\* float b = q[0]; *\/ */ /* /\* float c = q[1]; *\/ */ /* /\* float d = q[2]; *\/ */ /* /\* float a2 = a*a; *\/ */ /* /\* float b2 = b*b; *\/ */ /* /\* float c2 = c*c; *\/ */ /* /\* float d2 = d*d; *\/ */ /* /\* M[0][0] = a2 + b2 - c2 - d2; *\/ */ /* /\* M[0][1] = 2.f*(b*c + a*d); *\/ */ /* /\* M[0][2] = 2.f*(b*d - a*c); *\/ */ /* /\* M[0][3] = 0.f; *\/ */ /* /\* M[1][0] = 2*(b*c - a*d); *\/ */ /* /\* M[1][1] = a2 - b2 + c2 - d2; *\/ */ /* /\* M[1][2] = 2.f*(c*d + a*b); *\/ */ /* /\* M[1][3] = 0.f; *\/ */ /* /\* M[2][0] = 2.f*(b*d + a*c); *\/ */ /* /\* M[2][1] = 2.f*(c*d - a*b); *\/ */ /* /\* M[2][2] = a2 - b2 - c2 + d2; *\/ */ /* /\* M[2][3] = 0.f; *\/ */ /* /\* M[3][0] = M[3][1] = M[3][2] = 0.f; *\/ */ /* /\* M[3][3] = 1.f; *\/ */ /* float xx = q[0] * q[0]; */ /* float xy = q[0] * q[1]; */ /* float xz = q[0] * q[2]; */ /* float yy = q[1] * q[1]; */ /* float yz = q[1] * q[2]; */ /* float zz = q[2] * q[2]; */ /* float wz = q[3] * q[2]; */ /* float wy = q[3] * q[1]; */ /* float wx = q[3] * q[0]; */ /* M[0][0] = 1 - 2 * (yy + zz); */ /* M[0][1] = 2 * (xy + wz); */ /* M[0][2] = 2 * (xz - wy); */ /* M[0][3] = 0; */ /* M[1][0] = 2 * (xy - wz); */ /* M[1][1] = 1 - 2 * (xx + zz); */ /* M[1][2] = 2 * (yz + wx); */ /* M[1][3] = 0.0; */ /* M[2][0] = 2 * (xz + wy); */ /* M[2][1] = 2 * (yz - wx); */ /* M[2][2] = 1 - 2 * (xx + yy); */ /* M[2][3] = 0.0; */ /* M[3][0] = M[3][1] = M[3][2] = 0.f; */ /* M[3][3] = 1.f; */ /* } */ /* static inline void mat4o_mul_quat(mat4 R, mat4 M, quat q) */ /* { */ /* /\* XXX: The way this is written only works for othogonal matrices. *\/ */ /* /\* TODO: Take care of non-orthogonal case. *\/ */ /* quat_mul_vec3(R[0], q, M[0]); */ /* quat_mul_vec3(R[1], q, M[1]); */ /* quat_mul_vec3(R[2], q, M[2]); */ /* R[3][0] = R[3][1] = R[3][2] = 0.f; */ /* R[3][3] = 1.f; */ /* } */ /* static inline void quat_from_mat4(quat q, mat4 M) */ /* { */ /* float r=0.f; */ /* int i; */ /* int perm[] = { 0, 1, 2, 0, 1 }; */ /* int *p = perm; */ /* for(i = 0; i<3; i++) { */ /* float m = M[i][i]; */ /* if( m < r ) */ /* continue; */ /* m = r; */ /* p = &perm[i]; */ /* } */ /* r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); */ /* if(r < 1e-6) { */ /* q[0] = 1.f; */ /* q[1] = q[2] = q[3] = 0.f; */ /* return; */ /* } */ /* q[0] = r/2.f; */ /* q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r); */ /* q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r); */ /* q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); */ /* } */ #endif