|
|
|
@ -1,8 +1,6 @@ |
|
|
|
|
#ifndef LINMATH_H |
|
|
|
|
#define LINMATH_H |
|
|
|
|
|
|
|
|
|
/* Credit : https://github.com/datenwolf/linmath.h */ |
|
|
|
|
|
|
|
|
|
#include "../include/kazmath/kazmath/kazmath.h" |
|
|
|
|
#include "../include/kazmath/kazmath/vec4.h" |
|
|
|
|
#include <math.h> |
|
|
|
@ -65,662 +63,9 @@ typedef kmQuaternion quat; |
|
|
|
|
#define quat_get_up kmQuaternionGetUpVec3 |
|
|
|
|
#define quat_get_right kmQuaternionGetRightVec3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Conversions */ |
|
|
|
|
#define M_PI 3.14159265358979323846 |
|
|
|
|
#define TO_RADIANS(degrees) ((degrees * M_PI) / 180.0) |
|
|
|
|
#define TO_DEGREES(radians) ((radians * 180.0) / M_PI) |
|
|
|
|
|
|
|
|
|
/* #define LINMATH_H_DEFINE_VEC(n) \ */ |
|
|
|
|
/* typedef float vec##n[n]; \ */ |
|
|
|
|
/* static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ */ |
|
|
|
|
/* { \ */ |
|
|
|
|
/* int i; \ */ |
|
|
|
|
/* for(i=0; i<n; ++i) \ */ |
|
|
|
|
/* r[i] = a[i] + b[i]; \ */ |
|
|
|
|
/* } \ */ |
|
|
|
|
/* static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \ */ |
|
|
|
|
/* { \ */ |
|
|
|
|
/* int i; \ */ |
|
|
|
|
/* for(i=0; i<n; ++i) \ */ |
|
|
|
|
/* r[i] = a[i] - b[i]; \ */ |
|
|
|
|
/* } \ */ |
|
|
|
|
/* static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \ */ |
|
|
|
|
/* { \ */ |
|
|
|
|
/* int i; \ */ |
|
|
|
|
/* for(i=0; i<n; ++i) \ */ |
|
|
|
|
/* r[i] = v[i] * s; \ */ |
|
|
|
|
/* } \ */ |
|
|
|
|
/* static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \ */ |
|
|
|
|
/* { \ */ |
|
|
|
|
/* float p = 0.; \ */ |
|
|
|
|
/* int i; \ */ |
|
|
|
|
/* for(i=0; i<n; ++i) \ */ |
|
|
|
|
/* p += b[i]*a[i]; \ */ |
|
|
|
|
/* return p; \ */ |
|
|
|
|
/* } \ */ |
|
|
|
|
/* static inline float vec##n##_len(vec##n const v) \ */ |
|
|
|
|
/* { \ */ |
|
|
|
|
/* return sqrtf(vec##n##_mul_inner(v,v)); \ */ |
|
|
|
|
/* } \ */ |
|
|
|
|
/* static inline void vec##n##_norm(vec##n r, vec##n const v) \ */ |
|
|
|
|
/* { \ */ |
|
|
|
|
/* float k = 1.0 / vec##n##_len(v); \ */ |
|
|
|
|
/* vec##n##_scale(r, v, k); \ */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* LINMATH_H_DEFINE_VEC(2) */ |
|
|
|
|
/* LINMATH_H_DEFINE_VEC(3) */ |
|
|
|
|
/* LINMATH_H_DEFINE_VEC(4) */ |
|
|
|
|
|
|
|
|
|
/* static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* r[0] = a[1]*b[2] - a[2]*b[1]; */ |
|
|
|
|
/* r[1] = a[2]*b[0] - a[0]*b[2]; */ |
|
|
|
|
/* r[2] = a[0]*b[1] - a[1]*b[0]; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float p = 2.f*vec3_mul_inner(v, n); */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0;i<3;++i) */ |
|
|
|
|
/* r[i] = v[i] - p*n[i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* r[0] = a[1]*b[2] - a[2]*b[1]; */ |
|
|
|
|
/* r[1] = a[2]*b[0] - a[0]*b[2]; */ |
|
|
|
|
/* r[2] = a[0]*b[1] - a[1]*b[0]; */ |
|
|
|
|
/* r[3] = 1.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float p = 2.f*vec4_mul_inner(v, n); */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0;i<4;++i) */ |
|
|
|
|
/* r[i] = v[i] - p*n[i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* typedef vec4 mat4[4]; */ |
|
|
|
|
/* static inline void mat4_identity(mat4 M) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i, j; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* for(j=0; j<4; ++j) */ |
|
|
|
|
/* M[i][j] = i==j ? 1.f : 0.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_dup(mat4 M, mat4 N) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i, j; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* for(j=0; j<4; ++j) */ |
|
|
|
|
/* M[i][j] = N[i][j]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_row(vec4 r, mat4 M, int i) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int k; */ |
|
|
|
|
/* for(k=0; k<4; ++k) */ |
|
|
|
|
/* r[k] = M[k][i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_col(vec4 r, mat4 M, int i) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int k; */ |
|
|
|
|
/* for(k=0; k<4; ++k) */ |
|
|
|
|
/* r[k] = M[i][k]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_transpose(mat4 M, mat4 N) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i, j; */ |
|
|
|
|
/* for(j=0; j<4; ++j) */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* M[i][j] = N[j][i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_add(mat4 M, mat4 a, mat4 b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* vec4_add(M[i], a[i], b[i]); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_sub(mat4 M, mat4 a, mat4 b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* vec4_sub(M[i], a[i], b[i]); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_scale(mat4 M, mat4 a, float k) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* vec4_scale(M[i], a[i], k); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_scale_aniso(mat4 M, mat4 a, float x, float y, float z) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* int i; *\/ */ |
|
|
|
|
/* /\* vec4_scale(M[0], a[0], x); *\/ */ |
|
|
|
|
/* /\* vec4_scale(M[1], a[1], y); *\/ */ |
|
|
|
|
/* /\* vec4_scale(M[2], a[2], z); *\/ */ |
|
|
|
|
/* /\* for(i = 0; i < 4; ++i) { *\/ */ |
|
|
|
|
/* /\* M[3][i] = a[3][i]; *\/ */ |
|
|
|
|
/* /\* } *\/ */ |
|
|
|
|
|
|
|
|
|
/* M[0][0] = a[0][0] * x; */ |
|
|
|
|
/* M[1][1] = a[1][1] * y; */ |
|
|
|
|
/* M[2][2] = a[2][2] * z; */ |
|
|
|
|
/* M[3][3] = 1.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_mul(mat4 M, mat4 a, mat4 b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* mat4 temp; */ |
|
|
|
|
/* /\* int k, r, c; *\/ */ |
|
|
|
|
/* /\* for(c=0; c<4; ++c) for(r=0; r<4; ++r) { *\/ */ |
|
|
|
|
/* /\* temp[c][r] = 0.f; *\/ */ |
|
|
|
|
/* /\* for(k=0; k<4; ++k) *\/ */ |
|
|
|
|
/* /\* temp[c][r] += a[k][r] * b[c][k]; *\/ */ |
|
|
|
|
/* /\* } *\/ */ |
|
|
|
|
|
|
|
|
|
/* temp[0][0] = a[0][0] * b[0][0] + a[1][0] * b[0][1] + a[2][0] * b[0][2] + a[3][0] * b[0][3]; */ |
|
|
|
|
/* temp[1][0] = a[0][0] * b[1][0] + a[1][0] * b[1][1] + a[2][0] * b[1][2] + a[3][0] * b[1][3]; */ |
|
|
|
|
/* temp[2][0] = a[0][0] * b[2][0] + a[1][0] * b[2][1] + a[2][0] * b[2][2] + a[3][0] * b[2][3]; */ |
|
|
|
|
/* temp[3][0] = a[0][0] * b[3][0] + a[1][0] * b[3][1] + a[2][0] * b[3][2] + a[3][0] * b[3][3]; */ |
|
|
|
|
/* temp[0][1] = a[0][1] * b[0][0] + a[1][1] * b[0][1] + a[2][1] * b[0][2] + a[3][1] * b[0][3]; */ |
|
|
|
|
/* temp[1][1] = a[0][1] * b[1][0] + a[1][1] * b[1][1] + a[2][1] * b[1][2] + a[3][1] * b[1][3]; */ |
|
|
|
|
/* temp[2][1] = a[0][1] * b[2][0] + a[1][1] * b[2][1] + a[2][1] * b[2][2] + a[3][1] * b[2][3]; */ |
|
|
|
|
/* temp[3][1] = a[0][1] * b[3][0] + a[1][1] * b[3][1] + a[2][1] * b[3][2] + a[3][1] * b[3][3]; */ |
|
|
|
|
/* temp[0][2] = a[0][2] * b[0][0] + a[1][2] * b[0][1] + a[2][2] * b[0][2] + a[3][2] * b[0][3]; */ |
|
|
|
|
/* temp[1][2] = a[0][2] * b[1][0] + a[1][2] * b[1][1] + a[2][2] * b[1][2] + a[3][2] * b[1][3]; */ |
|
|
|
|
/* temp[2][2] = a[0][2] * b[2][0] + a[1][2] * b[2][1] + a[2][2] * b[2][2] + a[3][2] * b[2][3]; */ |
|
|
|
|
/* temp[3][2] = a[0][2] * b[3][0] + a[1][2] * b[3][1] + a[2][2] * b[3][2] + a[3][2] * b[3][3]; */ |
|
|
|
|
/* temp[0][3] = a[0][3] * b[0][0] + a[1][3] * b[0][1] + a[2][3] * b[0][2] + a[3][3] * b[0][3]; */ |
|
|
|
|
/* temp[1][3] = a[0][3] * b[1][0] + a[1][3] * b[1][1] + a[2][3] * b[1][2] + a[3][3] * b[1][3]; */ |
|
|
|
|
/* temp[2][3] = a[0][3] * b[2][0] + a[1][3] * b[2][1] + a[2][3] * b[2][2] + a[3][3] * b[2][3]; */ |
|
|
|
|
/* temp[3][3] = a[0][3] * b[3][0] + a[1][3] * b[3][1] + a[2][3] * b[3][2] + a[3][3] * b[3][3]; */ |
|
|
|
|
|
|
|
|
|
/* mat4_dup(M, temp); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_mul_vec4(vec4 r, mat4 M, vec4 v) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* int i, j; *\/ */ |
|
|
|
|
/* /\* for(j=0; j<4; ++j) { *\/ */ |
|
|
|
|
/* /\* r[j] = 0.f; *\/ */ |
|
|
|
|
/* /\* for(i=0; i<4; ++i) *\/ */ |
|
|
|
|
/* /\* r[j] += M[i][j] * v[i]; *\/ */ |
|
|
|
|
/* /\* } *\/ */ |
|
|
|
|
/* r[0] = (M[0][0] * v[0]) + (M[0][1] * v[1]) + (M[0][2] * v[2]) + (M[0][3] * v[3]); */ |
|
|
|
|
/* r[1] = (M[1][0] * v[0]) + (M[1][1] * v[1]) + (M[1][2] * v[2]) + (M[1][3] * v[3]); */ |
|
|
|
|
/* r[2] = (M[2][0] * v[0]) + (M[2][1] * v[1]) + (M[2][2] * v[2]) + (M[2][3] * v[3]); */ |
|
|
|
|
/* r[3] = (M[3][0] * v[0]) + (M[3][1] * v[1]) + (M[3][2] * v[2]) + (M[3][3] * v[3]); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_mul_vec3(vec3 r, mat4 M, vec3 v) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* vec4 temp; *\/ */ |
|
|
|
|
/* /\* for(int i = 0; i < 3; i++) *\/ */ |
|
|
|
|
/* /\* temp[i] = v[i]; *\/ */ |
|
|
|
|
/* /\* temp[3] = 1.f; *\/ */ |
|
|
|
|
/* /\* mat4_mul_vec4(temp, M, temp); *\/ */ |
|
|
|
|
/* /\* for(int i = 0; i < 3; i++) *\/ */ |
|
|
|
|
/* /\* r[i] = temp[i]; *\/ */ |
|
|
|
|
/* r[0] = (M[0][0] * v[0]) + (M[0][1] * v[1]) + (M[0][2] * v[2]) + (M[0][3]); */ |
|
|
|
|
/* r[1] = (M[1][0] * v[0]) + (M[1][1] * v[1]) + (M[1][2] * v[2]) + (M[1][3]); */ |
|
|
|
|
/* r[2] = (M[2][0] * v[0]) + (M[2][1] * v[1]) + (M[2][2] * v[2]) + (M[2][3]); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_translate(mat4 T, float x, float y, float z) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* mat4_identity(T); */ |
|
|
|
|
/* T[3][0] = x; */ |
|
|
|
|
/* T[3][1] = y; */ |
|
|
|
|
/* T[3][2] = z; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_translate_in_place(mat4 M, float x, float y, float z) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* vec4 t = {x, y, z, 0}; */ |
|
|
|
|
/* vec4 r; */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for (i = 0; i < 4; ++i) { */ |
|
|
|
|
/* mat4_row(r, M, i); */ |
|
|
|
|
/* M[3][i] += vec4_mul_inner(r, t); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_from_vec3_mul_outer(mat4 M, vec3 a, vec3 b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i, j; */ |
|
|
|
|
/* for(i=0; i<4; ++i) for(j=0; j<4; ++j) */ |
|
|
|
|
/* M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_rotate(mat4 R, mat4 M, float x, float y, float z, float angle) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float s = sinf(angle); */ |
|
|
|
|
/* float c = cosf(angle); */ |
|
|
|
|
/* vec3 u = {x, y, z}; */ |
|
|
|
|
|
|
|
|
|
/* if(vec3_len(u) > 1e-4) { */ |
|
|
|
|
/* vec3_norm(u, u); */ |
|
|
|
|
/* mat4 T; */ |
|
|
|
|
/* mat4_from_vec3_mul_outer(T, u, u); */ |
|
|
|
|
|
|
|
|
|
/* mat4 S = { */ |
|
|
|
|
/* { 0, u[2], -u[1], 0}, */ |
|
|
|
|
/* {-u[2], 0, u[0], 0}, */ |
|
|
|
|
/* { u[1], -u[0], 0, 0}, */ |
|
|
|
|
/* { 0, 0, 0, 0} */ |
|
|
|
|
/* }; */ |
|
|
|
|
/* mat4_scale(S, S, s); */ |
|
|
|
|
|
|
|
|
|
/* mat4 C; */ |
|
|
|
|
/* mat4_identity(C); */ |
|
|
|
|
/* mat4_sub(C, C, T); */ |
|
|
|
|
|
|
|
|
|
/* mat4_scale(C, C, c); */ |
|
|
|
|
|
|
|
|
|
/* mat4_add(T, T, C); */ |
|
|
|
|
/* mat4_add(T, T, S); */ |
|
|
|
|
|
|
|
|
|
/* T[3][3] = 1.; */ |
|
|
|
|
/* mat4_mul(R, M, T); */ |
|
|
|
|
/* } else { */ |
|
|
|
|
/* mat4_dup(R, M); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_rotate_X(mat4 Q, mat4 M, float angle) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float s = sinf(angle); */ |
|
|
|
|
/* float c = cosf(angle); */ |
|
|
|
|
/* mat4 R = { */ |
|
|
|
|
/* {1.f, 0.f, 0.f, 0.f}, */ |
|
|
|
|
/* {0.f, c, s, 0.f}, */ |
|
|
|
|
/* {0.f, -s, c, 0.f}, */ |
|
|
|
|
/* {0.f, 0.f, 0.f, 1.f} */ |
|
|
|
|
/* }; */ |
|
|
|
|
/* mat4_mul(Q, M, R); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_rotate_Y(mat4 Q, mat4 M, float angle) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float s = sinf(angle); */ |
|
|
|
|
/* float c = cosf(angle); */ |
|
|
|
|
/* mat4 R = { */ |
|
|
|
|
/* { c, 0.f, s, 0.f}, */ |
|
|
|
|
/* { 0.f, 1.f, 0.f, 0.f}, */ |
|
|
|
|
/* { -s, 0.f, c, 0.f}, */ |
|
|
|
|
/* { 0.f, 0.f, 0.f, 1.f} */ |
|
|
|
|
/* }; */ |
|
|
|
|
/* mat4_mul(Q, M, R); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_rotate_Z(mat4 Q, mat4 M, float angle) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float s = sinf(angle); */ |
|
|
|
|
/* float c = cosf(angle); */ |
|
|
|
|
/* mat4 R = { */ |
|
|
|
|
/* { c, s, 0.f, 0.f}, */ |
|
|
|
|
/* { -s, c, 0.f, 0.f}, */ |
|
|
|
|
/* { 0.f, 0.f, 1.f, 0.f}, */ |
|
|
|
|
/* { 0.f, 0.f, 0.f, 1.f} */ |
|
|
|
|
/* }; */ |
|
|
|
|
/* mat4_mul(Q, M, R); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_invert(mat4 T, mat4 M) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float s[6]; */ |
|
|
|
|
/* float c[6]; */ |
|
|
|
|
/* s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; */ |
|
|
|
|
/* s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2]; */ |
|
|
|
|
/* s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3]; */ |
|
|
|
|
/* s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2]; */ |
|
|
|
|
/* s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3]; */ |
|
|
|
|
/* s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3]; */ |
|
|
|
|
|
|
|
|
|
/* c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1]; */ |
|
|
|
|
/* c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2]; */ |
|
|
|
|
/* c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3]; */ |
|
|
|
|
/* c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2]; */ |
|
|
|
|
/* c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3]; */ |
|
|
|
|
/* c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; */ |
|
|
|
|
|
|
|
|
|
/* /\* Assumes it is invertible *\/ */ |
|
|
|
|
/* float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); */ |
|
|
|
|
|
|
|
|
|
/* T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; */ |
|
|
|
|
/* T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; */ |
|
|
|
|
/* T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; */ |
|
|
|
|
/* T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; */ |
|
|
|
|
|
|
|
|
|
/* T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; */ |
|
|
|
|
/* T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; */ |
|
|
|
|
/* T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; */ |
|
|
|
|
/* T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; */ |
|
|
|
|
|
|
|
|
|
/* T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; */ |
|
|
|
|
/* T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; */ |
|
|
|
|
/* T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; */ |
|
|
|
|
/* T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; */ |
|
|
|
|
|
|
|
|
|
/* T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; */ |
|
|
|
|
/* T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; */ |
|
|
|
|
/* T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; */ |
|
|
|
|
/* T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_orthonormalize(mat4 R, mat4 M) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* mat4_dup(R, M); */ |
|
|
|
|
/* float s = 1.; */ |
|
|
|
|
/* vec3 h; */ |
|
|
|
|
|
|
|
|
|
/* vec3_norm(R[2], R[2]); */ |
|
|
|
|
|
|
|
|
|
/* s = vec3_mul_inner(R[1], R[2]); */ |
|
|
|
|
/* vec3_scale(h, R[2], s); */ |
|
|
|
|
/* vec3_sub(R[1], R[1], h); */ |
|
|
|
|
/* vec3_norm(R[2], R[2]); */ |
|
|
|
|
|
|
|
|
|
/* s = vec3_mul_inner(R[1], R[2]); */ |
|
|
|
|
/* vec3_scale(h, R[2], s); */ |
|
|
|
|
/* vec3_sub(R[1], R[1], h); */ |
|
|
|
|
/* vec3_norm(R[1], R[1]); */ |
|
|
|
|
|
|
|
|
|
/* s = vec3_mul_inner(R[0], R[1]); */ |
|
|
|
|
/* vec3_scale(h, R[1], s); */ |
|
|
|
|
/* vec3_sub(R[0], R[0], h); */ |
|
|
|
|
/* vec3_norm(R[0], R[0]); */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* static inline void mat4_frustum(mat4 M, float l, float r, float b, float t, float n, float f) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* M[0][0] = 2.f*n/(r-l); */ |
|
|
|
|
/* M[0][1] = M[0][2] = M[0][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* M[1][1] = 2.*n/(t-b); */ |
|
|
|
|
/* M[1][0] = M[1][2] = M[1][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* M[2][0] = (r+l)/(r-l); */ |
|
|
|
|
/* M[2][1] = (t+b)/(t-b); */ |
|
|
|
|
/* M[2][2] = -(f+n)/(f-n); */ |
|
|
|
|
/* M[2][3] = -1.f; */ |
|
|
|
|
|
|
|
|
|
/* M[3][2] = -2.f*(f*n)/(f-n); */ |
|
|
|
|
/* M[3][0] = M[3][1] = M[3][3] = 0.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_ortho(mat4 M, float l, float r, float b, float t, float n, float f) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* M[0][0] = 2.f/(r-l); */ |
|
|
|
|
/* M[0][1] = M[0][2] = M[0][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* M[1][1] = 2.f/(t-b); */ |
|
|
|
|
/* M[1][0] = M[1][2] = M[1][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* M[2][2] = -2.f/(f-n); */ |
|
|
|
|
/* M[2][0] = M[2][1] = M[2][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* M[3][0] = -(r+l)/(r-l); */ |
|
|
|
|
/* M[3][1] = -(t+b)/(t-b); */ |
|
|
|
|
/* M[3][2] = -(f+n)/(f-n); */ |
|
|
|
|
/* M[3][3] = 1.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_perspective(mat4 m, float y_fov, float aspect, float n, float f) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* NOTE: Degrees are an unhandy unit to work with. */ |
|
|
|
|
/* * linmath.h uses radians for everything! *\/ */ |
|
|
|
|
/* float const a = 1.f / tan(y_fov / 2.f); */ |
|
|
|
|
|
|
|
|
|
/* m[0][0] = a / aspect; */ |
|
|
|
|
/* m[0][1] = 0.f; */ |
|
|
|
|
/* m[0][2] = 0.f; */ |
|
|
|
|
/* m[0][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* m[1][0] = 0.f; */ |
|
|
|
|
/* m[1][1] = a; */ |
|
|
|
|
/* m[1][2] = 0.f; */ |
|
|
|
|
/* m[1][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* m[2][0] = 0.f; */ |
|
|
|
|
/* m[2][1] = 0.f; */ |
|
|
|
|
/* m[2][2] = -((f + n) / (f - n)); */ |
|
|
|
|
/* m[2][3] = -1.f; */ |
|
|
|
|
|
|
|
|
|
/* m[3][0] = 0.f; */ |
|
|
|
|
/* m[3][1] = 0.f; */ |
|
|
|
|
/* m[3][2] = -((2.f * f * n) / (f - n)); */ |
|
|
|
|
/* m[3][3] = 0.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_look_at(mat4 m, vec3 eye, vec3 lookat, vec3 up) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* Adapted from Android's OpenGL Matrix.java. *\/ */ |
|
|
|
|
/* /\* See the OpenGL GLUT documentation for gluLookAt for a description *\/ */ |
|
|
|
|
/* /\* of the algorithm. We implement it in a straightforward way: *\/ */ |
|
|
|
|
|
|
|
|
|
/* /\* TODO: The negation of of can be spared by swapping the order of */ |
|
|
|
|
/* * operands in the following cross products in the right way. *\/ */ |
|
|
|
|
/* vec3 f; */ |
|
|
|
|
/* vec3_sub(f, lookat, eye); */ |
|
|
|
|
/* vec3_norm(f, f); */ |
|
|
|
|
|
|
|
|
|
/* vec3 s; */ |
|
|
|
|
/* vec3_mul_cross(s, f, up); */ |
|
|
|
|
/* vec3_norm(s, s); */ |
|
|
|
|
|
|
|
|
|
/* vec3 t; */ |
|
|
|
|
/* vec3_mul_cross(t, s, f); */ |
|
|
|
|
|
|
|
|
|
/* m[0][0] = s[0]; */ |
|
|
|
|
/* m[1][0] = s[1]; */ |
|
|
|
|
/* m[2][0] = s[2]; */ |
|
|
|
|
|
|
|
|
|
/* m[0][1] = t[0]; */ |
|
|
|
|
/* m[1][1] = t[1]; */ |
|
|
|
|
/* m[2][1] = t[2]; */ |
|
|
|
|
|
|
|
|
|
/* m[0][2] = -f[0]; */ |
|
|
|
|
/* m[1][2] = -f[1]; */ |
|
|
|
|
/* m[2][2] = -f[2]; */ |
|
|
|
|
|
|
|
|
|
/* m[0][3] = 0.f; */ |
|
|
|
|
/* m[1][3] = 0.f; */ |
|
|
|
|
/* m[2][3] = 0.f; */ |
|
|
|
|
|
|
|
|
|
/* m[3][0] = -vec3_mul_inner(s, eye); */ |
|
|
|
|
/* m[3][1] = -vec3_mul_inner(t, eye); */ |
|
|
|
|
/* m[3][2] = vec3_mul_inner(f, eye); */ |
|
|
|
|
/* m[3][3] = 1.f; */ |
|
|
|
|
|
|
|
|
|
/* //mat4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* typedef float quat[4]; */ |
|
|
|
|
/* static inline void quat_identity(quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* q[0] = q[1] = q[2] = 0.f; */ |
|
|
|
|
/* q[3] = 1.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_add(quat r, quat a, quat b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* r[i] = a[i] + b[i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_sub(quat r, quat a, quat b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* r[i] = a[i] - b[i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_mul(quat r, quat p, quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* vec3 w; *\/ */ |
|
|
|
|
/* /\* vec3_mul_cross(r, p, q); *\/ */ |
|
|
|
|
/* /\* vec3_scale(w, p, q[3]); *\/ */ |
|
|
|
|
/* /\* vec3_add(r, r, w); *\/ */ |
|
|
|
|
/* /\* vec3_scale(w, q, p[3]); *\/ */ |
|
|
|
|
/* /\* vec3_add(r, r, w); *\/ */ |
|
|
|
|
/* /\* r[3] = p[3]*q[3] - vec3_mul_inner(p, q); *\/ */ |
|
|
|
|
|
|
|
|
|
/* r[0] = (p[3] * q[0]) + (p[0] * q[3]) + (p[1] * q[2]) - (p[2] * q[1]); */ |
|
|
|
|
/* r[1] = (p[3] * q[1]) + (p[1] * q[3]) + (p[2] * q[0]) - (p[0] * q[2]); */ |
|
|
|
|
/* r[2] = (p[3] * q[2]) + (p[2] * q[3]) + (p[0] * q[1]) - (p[1] * q[0]); */ |
|
|
|
|
/* r[3] = (p[3] * q[3]) - (p[0] * q[0]) - (p[1] * q[1]) - (p[2] * q[2]); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_scale(quat r, quat v, float s) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* r[i] = v[i] * s; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline float quat_inner_product(quat a, quat b) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float p = 0.f; */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<4; ++i) */ |
|
|
|
|
/* p += b[i]*a[i]; */ |
|
|
|
|
/* return p; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_conj(quat r, quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<3; ++i) */ |
|
|
|
|
/* r[i] = -q[i]; */ |
|
|
|
|
/* r[3] = q[3]; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_rotate(quat r, float angle, vec3 axis) { */ |
|
|
|
|
/* vec3 v; */ |
|
|
|
|
/* vec3_scale(v, axis, sinf(angle / 2.f)); */ |
|
|
|
|
/* int i; */ |
|
|
|
|
/* for(i=0; i<3; ++i) */ |
|
|
|
|
/* r[i] = v[i]; */ |
|
|
|
|
/* r[3] = cosf(angle / 2.f); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* #define quat_norm vec4_norm */ |
|
|
|
|
/* static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* */ |
|
|
|
|
/* * Method by Fabian 'ryg' Giessen (of Farbrausch) */ |
|
|
|
|
/* t = 2 * cross(q.xyz, v) */ |
|
|
|
|
/* v' = v + q.w * t + cross(q.xyz, t) */ |
|
|
|
|
/* *\/ */ |
|
|
|
|
/* vec3 t = {q[0], q[1], q[2]}; */ |
|
|
|
|
/* vec3 u = {q[0], q[1], q[2]}; */ |
|
|
|
|
|
|
|
|
|
/* vec3_mul_cross(t, t, v); */ |
|
|
|
|
/* vec3_scale(t, t, 2.f); */ |
|
|
|
|
|
|
|
|
|
/* vec3_mul_cross(u, u, t); */ |
|
|
|
|
/* vec3_scale(t, t, q[3]); */ |
|
|
|
|
|
|
|
|
|
/* vec3_add(r, v, t); */ |
|
|
|
|
/* vec3_add(r, r, u); */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline float quat_pitch(quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float result = atan2(2 * (q[1] * q[2] + q[3] * q[0]), q[3] * q[3] - q[0] * q[0] - q[1] * q[1] + q[2] * q[2]); */ |
|
|
|
|
/* return result; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* static inline float quat_yaw(quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float result = asin(-2 * (q[0] * q[2] - q[3] * q[1])); */ |
|
|
|
|
/* return result; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline float quat_roll(quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float result = atan2(2 * (q[0] * q[1] + q[3] * q[2]), q[3] * q[3] + q[0] * q[0] - q[1] * q[1] - q[2] * q[2]); */ |
|
|
|
|
/* return result; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void mat4_from_quat(mat4 M, quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* float a = q[3]; *\/ */ |
|
|
|
|
/* /\* float b = q[0]; *\/ */ |
|
|
|
|
/* /\* float c = q[1]; *\/ */ |
|
|
|
|
/* /\* float d = q[2]; *\/ */ |
|
|
|
|
/* /\* float a2 = a*a; *\/ */ |
|
|
|
|
/* /\* float b2 = b*b; *\/ */ |
|
|
|
|
/* /\* float c2 = c*c; *\/ */ |
|
|
|
|
/* /\* float d2 = d*d; *\/ */ |
|
|
|
|
|
|
|
|
|
/* /\* M[0][0] = a2 + b2 - c2 - d2; *\/ */ |
|
|
|
|
/* /\* M[0][1] = 2.f*(b*c + a*d); *\/ */ |
|
|
|
|
/* /\* M[0][2] = 2.f*(b*d - a*c); *\/ */ |
|
|
|
|
/* /\* M[0][3] = 0.f; *\/ */ |
|
|
|
|
|
|
|
|
|
/* /\* M[1][0] = 2*(b*c - a*d); *\/ */ |
|
|
|
|
/* /\* M[1][1] = a2 - b2 + c2 - d2; *\/ */ |
|
|
|
|
/* /\* M[1][2] = 2.f*(c*d + a*b); *\/ */ |
|
|
|
|
/* /\* M[1][3] = 0.f; *\/ */ |
|
|
|
|
|
|
|
|
|
/* /\* M[2][0] = 2.f*(b*d + a*c); *\/ */ |
|
|
|
|
/* /\* M[2][1] = 2.f*(c*d - a*b); *\/ */ |
|
|
|
|
/* /\* M[2][2] = a2 - b2 - c2 + d2; *\/ */ |
|
|
|
|
/* /\* M[2][3] = 0.f; *\/ */ |
|
|
|
|
|
|
|
|
|
/* /\* M[3][0] = M[3][1] = M[3][2] = 0.f; *\/ */ |
|
|
|
|
/* /\* M[3][3] = 1.f; *\/ */ |
|
|
|
|
|
|
|
|
|
/* float xx = q[0] * q[0]; */ |
|
|
|
|
/* float xy = q[0] * q[1]; */ |
|
|
|
|
/* float xz = q[0] * q[2]; */ |
|
|
|
|
|
|
|
|
|
/* float yy = q[1] * q[1]; */ |
|
|
|
|
/* float yz = q[1] * q[2]; */ |
|
|
|
|
|
|
|
|
|
/* float zz = q[2] * q[2]; */ |
|
|
|
|
/* float wz = q[3] * q[2]; */ |
|
|
|
|
/* float wy = q[3] * q[1]; */ |
|
|
|
|
/* float wx = q[3] * q[0]; */ |
|
|
|
|
|
|
|
|
|
/* M[0][0] = 1 - 2 * (yy + zz); */ |
|
|
|
|
/* M[0][1] = 2 * (xy + wz); */ |
|
|
|
|
/* M[0][2] = 2 * (xz - wy); */ |
|
|
|
|
/* M[0][3] = 0; */ |
|
|
|
|
|
|
|
|
|
/* M[1][0] = 2 * (xy - wz); */ |
|
|
|
|
/* M[1][1] = 1 - 2 * (xx + zz); */ |
|
|
|
|
/* M[1][2] = 2 * (yz + wx); */ |
|
|
|
|
/* M[1][3] = 0.0; */ |
|
|
|
|
|
|
|
|
|
/* M[2][0] = 2 * (xz + wy); */ |
|
|
|
|
/* M[2][1] = 2 * (yz - wx); */ |
|
|
|
|
/* M[2][2] = 1 - 2 * (xx + yy); */ |
|
|
|
|
/* M[2][3] = 0.0; */ |
|
|
|
|
|
|
|
|
|
/* M[3][0] = M[3][1] = M[3][2] = 0.f; */ |
|
|
|
|
/* M[3][3] = 1.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* static inline void mat4o_mul_quat(mat4 R, mat4 M, quat q) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* /\* XXX: The way this is written only works for othogonal matrices. *\/ */ |
|
|
|
|
/* /\* TODO: Take care of non-orthogonal case. *\/ */ |
|
|
|
|
/* quat_mul_vec3(R[0], q, M[0]); */ |
|
|
|
|
/* quat_mul_vec3(R[1], q, M[1]); */ |
|
|
|
|
/* quat_mul_vec3(R[2], q, M[2]); */ |
|
|
|
|
|
|
|
|
|
/* R[3][0] = R[3][1] = R[3][2] = 0.f; */ |
|
|
|
|
/* R[3][3] = 1.f; */ |
|
|
|
|
/* } */ |
|
|
|
|
/* static inline void quat_from_mat4(quat q, mat4 M) */ |
|
|
|
|
/* { */ |
|
|
|
|
/* float r=0.f; */ |
|
|
|
|
/* int i; */ |
|
|
|
|
|
|
|
|
|
/* int perm[] = { 0, 1, 2, 0, 1 }; */ |
|
|
|
|
/* int *p = perm; */ |
|
|
|
|
|
|
|
|
|
/* for(i = 0; i<3; i++) { */ |
|
|
|
|
/* float m = M[i][i]; */ |
|
|
|
|
/* if( m < r ) */ |
|
|
|
|
/* continue; */ |
|
|
|
|
/* m = r; */ |
|
|
|
|
/* p = &perm[i]; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); */ |
|
|
|
|
|
|
|
|
|
/* if(r < 1e-6) { */ |
|
|
|
|
/* q[0] = 1.f; */ |
|
|
|
|
/* q[1] = q[2] = q[3] = 0.f; */ |
|
|
|
|
/* return; */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
/* q[0] = r/2.f; */ |
|
|
|
|
/* q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r); */ |
|
|
|
|
/* q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r); */ |
|
|
|
|
/* q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); */ |
|
|
|
|
/* } */ |
|
|
|
|
|
|
|
|
|
#endif |
|
|
|
|