You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
726 lines
23 KiB
726 lines
23 KiB
#ifndef LINMATH_H
|
|
#define LINMATH_H
|
|
|
|
/* Credit : https://github.com/datenwolf/linmath.h */
|
|
|
|
#include "../include/kazmath/kazmath/kazmath.h"
|
|
#include "../include/kazmath/kazmath/vec4.h"
|
|
#include <math.h>
|
|
|
|
/* Just for convenience & consistency */
|
|
typedef kmVec2 vec2;
|
|
typedef kmVec3 vec3;
|
|
typedef struct kmVec4 vec4;
|
|
typedef kmMat3 mat3;
|
|
typedef kmMat4 mat4;
|
|
typedef kmQuaternion quat;
|
|
|
|
/* vec3 */
|
|
#define vec3_fill kmVec3Fill
|
|
#define vec3_add kmVec3Add
|
|
#define vec3_assign kmVec3Assign
|
|
#define vec3_norm kmVec3Normalize
|
|
#define vec3_mul kmVec3Mul
|
|
#define vec3_mul_mat4 kmVec3MultiplyMat4
|
|
#define vec3_mul_mat3 kmVec3MultiplyMat3
|
|
#define vec3_scale kmVec3Scale
|
|
#define vec3_equals kmVec3Equals
|
|
#define vec3_transform kmVec3Transform
|
|
#define vec3_transform_norm kmVec3TransformNormal
|
|
#define vec3_len kmVec3Length
|
|
|
|
/* vec4 */
|
|
#define vec4_fill kmVec4Fill
|
|
#define vec4_add kmVec4Add
|
|
#define vec4_assign kmVec4Assign
|
|
#define vec4_norm kmVec4Normalize
|
|
#define vec4_mul kmVec4Mul
|
|
#define vec4_mul_mat4 kmVec4MultiplyMat4
|
|
#define vec4_scale kmVec4Scale
|
|
#define vec4_equals kmVec4Equals
|
|
#define vec4_transform kmVec4Transform
|
|
#define vec4_transform_norm kmVec4TransformNormal
|
|
#define vec4_len kmVec4Length
|
|
|
|
/* mat4 */
|
|
#define mat4_identity kmMat4Identity
|
|
#define mat4_mul kmMat4Multiply
|
|
#define mat4_lookat kmMat4LookAt
|
|
#define mat4_perspective kmMat4PerspectiveProjection
|
|
#define mat4_ortho kmMat4OrthographicProjection
|
|
#define mat4_scale kmMat4Scaling
|
|
#define mat4_translate kmMat4Translation
|
|
#define mat4_from_quat kmMat4RotationQuaternion
|
|
#define mat4_rot_x kmMat4RotationX
|
|
#define mat4_rot_y kmMat4RotationY
|
|
#define mat4_rot_z kmMat4RotationZ
|
|
|
|
/* quat */
|
|
#define quat_identity kmQuaternionIdentity
|
|
#define quat_mul_vec3 kmQuaternionMultiplyVec3
|
|
#define quat_mul kmQuaternionMultiply
|
|
#define quat_axis_angle kmQuaternionRotationAxisAngle
|
|
#define quat_get_forward_rh kmQuaternionGetForwardVec3RH
|
|
#define quat_get_forward_lh kmQuaternionGetForwardVec3LH
|
|
#define quat_get_up kmQuaternionGetUpVec3
|
|
#define quat_get_right kmQuaternionGetRightVec3
|
|
|
|
|
|
#define M_PI 3.14159265358979323846
|
|
#define TO_RADIANS(degrees) ((degrees * M_PI) / 180.0)
|
|
#define TO_DEGREES(radians) ((radians * 180.0) / M_PI)
|
|
|
|
/* #define LINMATH_H_DEFINE_VEC(n) \ */
|
|
/* typedef float vec##n[n]; \ */
|
|
/* static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ */
|
|
/* { \ */
|
|
/* int i; \ */
|
|
/* for(i=0; i<n; ++i) \ */
|
|
/* r[i] = a[i] + b[i]; \ */
|
|
/* } \ */
|
|
/* static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \ */
|
|
/* { \ */
|
|
/* int i; \ */
|
|
/* for(i=0; i<n; ++i) \ */
|
|
/* r[i] = a[i] - b[i]; \ */
|
|
/* } \ */
|
|
/* static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \ */
|
|
/* { \ */
|
|
/* int i; \ */
|
|
/* for(i=0; i<n; ++i) \ */
|
|
/* r[i] = v[i] * s; \ */
|
|
/* } \ */
|
|
/* static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \ */
|
|
/* { \ */
|
|
/* float p = 0.; \ */
|
|
/* int i; \ */
|
|
/* for(i=0; i<n; ++i) \ */
|
|
/* p += b[i]*a[i]; \ */
|
|
/* return p; \ */
|
|
/* } \ */
|
|
/* static inline float vec##n##_len(vec##n const v) \ */
|
|
/* { \ */
|
|
/* return sqrtf(vec##n##_mul_inner(v,v)); \ */
|
|
/* } \ */
|
|
/* static inline void vec##n##_norm(vec##n r, vec##n const v) \ */
|
|
/* { \ */
|
|
/* float k = 1.0 / vec##n##_len(v); \ */
|
|
/* vec##n##_scale(r, v, k); \ */
|
|
/* } */
|
|
|
|
/* LINMATH_H_DEFINE_VEC(2) */
|
|
/* LINMATH_H_DEFINE_VEC(3) */
|
|
/* LINMATH_H_DEFINE_VEC(4) */
|
|
|
|
/* static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b) */
|
|
/* { */
|
|
/* r[0] = a[1]*b[2] - a[2]*b[1]; */
|
|
/* r[1] = a[2]*b[0] - a[0]*b[2]; */
|
|
/* r[2] = a[0]*b[1] - a[1]*b[0]; */
|
|
/* } */
|
|
|
|
/* static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n) */
|
|
/* { */
|
|
/* float p = 2.f*vec3_mul_inner(v, n); */
|
|
/* int i; */
|
|
/* for(i=0;i<3;++i) */
|
|
/* r[i] = v[i] - p*n[i]; */
|
|
/* } */
|
|
|
|
/* static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b) */
|
|
/* { */
|
|
/* r[0] = a[1]*b[2] - a[2]*b[1]; */
|
|
/* r[1] = a[2]*b[0] - a[0]*b[2]; */
|
|
/* r[2] = a[0]*b[1] - a[1]*b[0]; */
|
|
/* r[3] = 1.f; */
|
|
/* } */
|
|
|
|
/* static inline void vec4_reflect(vec4 r, vec4 v, vec4 n) */
|
|
/* { */
|
|
/* float p = 2.f*vec4_mul_inner(v, n); */
|
|
/* int i; */
|
|
/* for(i=0;i<4;++i) */
|
|
/* r[i] = v[i] - p*n[i]; */
|
|
/* } */
|
|
|
|
/* typedef vec4 mat4[4]; */
|
|
/* static inline void mat4_identity(mat4 M) */
|
|
/* { */
|
|
/* int i, j; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* for(j=0; j<4; ++j) */
|
|
/* M[i][j] = i==j ? 1.f : 0.f; */
|
|
/* } */
|
|
/* static inline void mat4_dup(mat4 M, mat4 N) */
|
|
/* { */
|
|
/* int i, j; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* for(j=0; j<4; ++j) */
|
|
/* M[i][j] = N[i][j]; */
|
|
/* } */
|
|
/* static inline void mat4_row(vec4 r, mat4 M, int i) */
|
|
/* { */
|
|
/* int k; */
|
|
/* for(k=0; k<4; ++k) */
|
|
/* r[k] = M[k][i]; */
|
|
/* } */
|
|
/* static inline void mat4_col(vec4 r, mat4 M, int i) */
|
|
/* { */
|
|
/* int k; */
|
|
/* for(k=0; k<4; ++k) */
|
|
/* r[k] = M[i][k]; */
|
|
/* } */
|
|
/* static inline void mat4_transpose(mat4 M, mat4 N) */
|
|
/* { */
|
|
/* int i, j; */
|
|
/* for(j=0; j<4; ++j) */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* M[i][j] = N[j][i]; */
|
|
/* } */
|
|
/* static inline void mat4_add(mat4 M, mat4 a, mat4 b) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* vec4_add(M[i], a[i], b[i]); */
|
|
/* } */
|
|
/* static inline void mat4_sub(mat4 M, mat4 a, mat4 b) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* vec4_sub(M[i], a[i], b[i]); */
|
|
/* } */
|
|
/* static inline void mat4_scale(mat4 M, mat4 a, float k) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* vec4_scale(M[i], a[i], k); */
|
|
/* } */
|
|
/* static inline void mat4_scale_aniso(mat4 M, mat4 a, float x, float y, float z) */
|
|
/* { */
|
|
/* /\* int i; *\/ */
|
|
/* /\* vec4_scale(M[0], a[0], x); *\/ */
|
|
/* /\* vec4_scale(M[1], a[1], y); *\/ */
|
|
/* /\* vec4_scale(M[2], a[2], z); *\/ */
|
|
/* /\* for(i = 0; i < 4; ++i) { *\/ */
|
|
/* /\* M[3][i] = a[3][i]; *\/ */
|
|
/* /\* } *\/ */
|
|
|
|
/* M[0][0] = a[0][0] * x; */
|
|
/* M[1][1] = a[1][1] * y; */
|
|
/* M[2][2] = a[2][2] * z; */
|
|
/* M[3][3] = 1.f; */
|
|
/* } */
|
|
/* static inline void mat4_mul(mat4 M, mat4 a, mat4 b) */
|
|
/* { */
|
|
/* mat4 temp; */
|
|
/* /\* int k, r, c; *\/ */
|
|
/* /\* for(c=0; c<4; ++c) for(r=0; r<4; ++r) { *\/ */
|
|
/* /\* temp[c][r] = 0.f; *\/ */
|
|
/* /\* for(k=0; k<4; ++k) *\/ */
|
|
/* /\* temp[c][r] += a[k][r] * b[c][k]; *\/ */
|
|
/* /\* } *\/ */
|
|
|
|
/* temp[0][0] = a[0][0] * b[0][0] + a[1][0] * b[0][1] + a[2][0] * b[0][2] + a[3][0] * b[0][3]; */
|
|
/* temp[1][0] = a[0][0] * b[1][0] + a[1][0] * b[1][1] + a[2][0] * b[1][2] + a[3][0] * b[1][3]; */
|
|
/* temp[2][0] = a[0][0] * b[2][0] + a[1][0] * b[2][1] + a[2][0] * b[2][2] + a[3][0] * b[2][3]; */
|
|
/* temp[3][0] = a[0][0] * b[3][0] + a[1][0] * b[3][1] + a[2][0] * b[3][2] + a[3][0] * b[3][3]; */
|
|
/* temp[0][1] = a[0][1] * b[0][0] + a[1][1] * b[0][1] + a[2][1] * b[0][2] + a[3][1] * b[0][3]; */
|
|
/* temp[1][1] = a[0][1] * b[1][0] + a[1][1] * b[1][1] + a[2][1] * b[1][2] + a[3][1] * b[1][3]; */
|
|
/* temp[2][1] = a[0][1] * b[2][0] + a[1][1] * b[2][1] + a[2][1] * b[2][2] + a[3][1] * b[2][3]; */
|
|
/* temp[3][1] = a[0][1] * b[3][0] + a[1][1] * b[3][1] + a[2][1] * b[3][2] + a[3][1] * b[3][3]; */
|
|
/* temp[0][2] = a[0][2] * b[0][0] + a[1][2] * b[0][1] + a[2][2] * b[0][2] + a[3][2] * b[0][3]; */
|
|
/* temp[1][2] = a[0][2] * b[1][0] + a[1][2] * b[1][1] + a[2][2] * b[1][2] + a[3][2] * b[1][3]; */
|
|
/* temp[2][2] = a[0][2] * b[2][0] + a[1][2] * b[2][1] + a[2][2] * b[2][2] + a[3][2] * b[2][3]; */
|
|
/* temp[3][2] = a[0][2] * b[3][0] + a[1][2] * b[3][1] + a[2][2] * b[3][2] + a[3][2] * b[3][3]; */
|
|
/* temp[0][3] = a[0][3] * b[0][0] + a[1][3] * b[0][1] + a[2][3] * b[0][2] + a[3][3] * b[0][3]; */
|
|
/* temp[1][3] = a[0][3] * b[1][0] + a[1][3] * b[1][1] + a[2][3] * b[1][2] + a[3][3] * b[1][3]; */
|
|
/* temp[2][3] = a[0][3] * b[2][0] + a[1][3] * b[2][1] + a[2][3] * b[2][2] + a[3][3] * b[2][3]; */
|
|
/* temp[3][3] = a[0][3] * b[3][0] + a[1][3] * b[3][1] + a[2][3] * b[3][2] + a[3][3] * b[3][3]; */
|
|
|
|
/* mat4_dup(M, temp); */
|
|
/* } */
|
|
/* static inline void mat4_mul_vec4(vec4 r, mat4 M, vec4 v) */
|
|
/* { */
|
|
/* /\* int i, j; *\/ */
|
|
/* /\* for(j=0; j<4; ++j) { *\/ */
|
|
/* /\* r[j] = 0.f; *\/ */
|
|
/* /\* for(i=0; i<4; ++i) *\/ */
|
|
/* /\* r[j] += M[i][j] * v[i]; *\/ */
|
|
/* /\* } *\/ */
|
|
/* r[0] = (M[0][0] * v[0]) + (M[0][1] * v[1]) + (M[0][2] * v[2]) + (M[0][3] * v[3]); */
|
|
/* r[1] = (M[1][0] * v[0]) + (M[1][1] * v[1]) + (M[1][2] * v[2]) + (M[1][3] * v[3]); */
|
|
/* r[2] = (M[2][0] * v[0]) + (M[2][1] * v[1]) + (M[2][2] * v[2]) + (M[2][3] * v[3]); */
|
|
/* r[3] = (M[3][0] * v[0]) + (M[3][1] * v[1]) + (M[3][2] * v[2]) + (M[3][3] * v[3]); */
|
|
/* } */
|
|
/* static inline void mat4_mul_vec3(vec3 r, mat4 M, vec3 v) */
|
|
/* { */
|
|
/* /\* vec4 temp; *\/ */
|
|
/* /\* for(int i = 0; i < 3; i++) *\/ */
|
|
/* /\* temp[i] = v[i]; *\/ */
|
|
/* /\* temp[3] = 1.f; *\/ */
|
|
/* /\* mat4_mul_vec4(temp, M, temp); *\/ */
|
|
/* /\* for(int i = 0; i < 3; i++) *\/ */
|
|
/* /\* r[i] = temp[i]; *\/ */
|
|
/* r[0] = (M[0][0] * v[0]) + (M[0][1] * v[1]) + (M[0][2] * v[2]) + (M[0][3]); */
|
|
/* r[1] = (M[1][0] * v[0]) + (M[1][1] * v[1]) + (M[1][2] * v[2]) + (M[1][3]); */
|
|
/* r[2] = (M[2][0] * v[0]) + (M[2][1] * v[1]) + (M[2][2] * v[2]) + (M[2][3]); */
|
|
/* } */
|
|
/* static inline void mat4_translate(mat4 T, float x, float y, float z) */
|
|
/* { */
|
|
/* mat4_identity(T); */
|
|
/* T[3][0] = x; */
|
|
/* T[3][1] = y; */
|
|
/* T[3][2] = z; */
|
|
/* } */
|
|
/* static inline void mat4_translate_in_place(mat4 M, float x, float y, float z) */
|
|
/* { */
|
|
/* vec4 t = {x, y, z, 0}; */
|
|
/* vec4 r; */
|
|
/* int i; */
|
|
/* for (i = 0; i < 4; ++i) { */
|
|
/* mat4_row(r, M, i); */
|
|
/* M[3][i] += vec4_mul_inner(r, t); */
|
|
/* } */
|
|
/* } */
|
|
/* static inline void mat4_from_vec3_mul_outer(mat4 M, vec3 a, vec3 b) */
|
|
/* { */
|
|
/* int i, j; */
|
|
/* for(i=0; i<4; ++i) for(j=0; j<4; ++j) */
|
|
/* M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f; */
|
|
/* } */
|
|
/* static inline void mat4_rotate(mat4 R, mat4 M, float x, float y, float z, float angle) */
|
|
/* { */
|
|
/* float s = sinf(angle); */
|
|
/* float c = cosf(angle); */
|
|
/* vec3 u = {x, y, z}; */
|
|
|
|
/* if(vec3_len(u) > 1e-4) { */
|
|
/* vec3_norm(u, u); */
|
|
/* mat4 T; */
|
|
/* mat4_from_vec3_mul_outer(T, u, u); */
|
|
|
|
/* mat4 S = { */
|
|
/* { 0, u[2], -u[1], 0}, */
|
|
/* {-u[2], 0, u[0], 0}, */
|
|
/* { u[1], -u[0], 0, 0}, */
|
|
/* { 0, 0, 0, 0} */
|
|
/* }; */
|
|
/* mat4_scale(S, S, s); */
|
|
|
|
/* mat4 C; */
|
|
/* mat4_identity(C); */
|
|
/* mat4_sub(C, C, T); */
|
|
|
|
/* mat4_scale(C, C, c); */
|
|
|
|
/* mat4_add(T, T, C); */
|
|
/* mat4_add(T, T, S); */
|
|
|
|
/* T[3][3] = 1.; */
|
|
/* mat4_mul(R, M, T); */
|
|
/* } else { */
|
|
/* mat4_dup(R, M); */
|
|
/* } */
|
|
/* } */
|
|
/* static inline void mat4_rotate_X(mat4 Q, mat4 M, float angle) */
|
|
/* { */
|
|
/* float s = sinf(angle); */
|
|
/* float c = cosf(angle); */
|
|
/* mat4 R = { */
|
|
/* {1.f, 0.f, 0.f, 0.f}, */
|
|
/* {0.f, c, s, 0.f}, */
|
|
/* {0.f, -s, c, 0.f}, */
|
|
/* {0.f, 0.f, 0.f, 1.f} */
|
|
/* }; */
|
|
/* mat4_mul(Q, M, R); */
|
|
/* } */
|
|
/* static inline void mat4_rotate_Y(mat4 Q, mat4 M, float angle) */
|
|
/* { */
|
|
/* float s = sinf(angle); */
|
|
/* float c = cosf(angle); */
|
|
/* mat4 R = { */
|
|
/* { c, 0.f, s, 0.f}, */
|
|
/* { 0.f, 1.f, 0.f, 0.f}, */
|
|
/* { -s, 0.f, c, 0.f}, */
|
|
/* { 0.f, 0.f, 0.f, 1.f} */
|
|
/* }; */
|
|
/* mat4_mul(Q, M, R); */
|
|
/* } */
|
|
/* static inline void mat4_rotate_Z(mat4 Q, mat4 M, float angle) */
|
|
/* { */
|
|
/* float s = sinf(angle); */
|
|
/* float c = cosf(angle); */
|
|
/* mat4 R = { */
|
|
/* { c, s, 0.f, 0.f}, */
|
|
/* { -s, c, 0.f, 0.f}, */
|
|
/* { 0.f, 0.f, 1.f, 0.f}, */
|
|
/* { 0.f, 0.f, 0.f, 1.f} */
|
|
/* }; */
|
|
/* mat4_mul(Q, M, R); */
|
|
/* } */
|
|
/* static inline void mat4_invert(mat4 T, mat4 M) */
|
|
/* { */
|
|
/* float s[6]; */
|
|
/* float c[6]; */
|
|
/* s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; */
|
|
/* s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2]; */
|
|
/* s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3]; */
|
|
/* s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2]; */
|
|
/* s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3]; */
|
|
/* s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3]; */
|
|
|
|
/* c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1]; */
|
|
/* c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2]; */
|
|
/* c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3]; */
|
|
/* c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2]; */
|
|
/* c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3]; */
|
|
/* c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; */
|
|
|
|
/* /\* Assumes it is invertible *\/ */
|
|
/* float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); */
|
|
|
|
/* T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; */
|
|
/* T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; */
|
|
/* T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; */
|
|
/* T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; */
|
|
|
|
/* T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; */
|
|
/* T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; */
|
|
/* T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; */
|
|
/* T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; */
|
|
|
|
/* T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; */
|
|
/* T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; */
|
|
/* T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; */
|
|
/* T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; */
|
|
|
|
/* T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; */
|
|
/* T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; */
|
|
/* T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; */
|
|
/* T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; */
|
|
/* } */
|
|
/* static inline void mat4_orthonormalize(mat4 R, mat4 M) */
|
|
/* { */
|
|
/* mat4_dup(R, M); */
|
|
/* float s = 1.; */
|
|
/* vec3 h; */
|
|
|
|
/* vec3_norm(R[2], R[2]); */
|
|
|
|
/* s = vec3_mul_inner(R[1], R[2]); */
|
|
/* vec3_scale(h, R[2], s); */
|
|
/* vec3_sub(R[1], R[1], h); */
|
|
/* vec3_norm(R[2], R[2]); */
|
|
|
|
/* s = vec3_mul_inner(R[1], R[2]); */
|
|
/* vec3_scale(h, R[2], s); */
|
|
/* vec3_sub(R[1], R[1], h); */
|
|
/* vec3_norm(R[1], R[1]); */
|
|
|
|
/* s = vec3_mul_inner(R[0], R[1]); */
|
|
/* vec3_scale(h, R[1], s); */
|
|
/* vec3_sub(R[0], R[0], h); */
|
|
/* vec3_norm(R[0], R[0]); */
|
|
/* } */
|
|
|
|
/* static inline void mat4_frustum(mat4 M, float l, float r, float b, float t, float n, float f) */
|
|
/* { */
|
|
/* M[0][0] = 2.f*n/(r-l); */
|
|
/* M[0][1] = M[0][2] = M[0][3] = 0.f; */
|
|
|
|
/* M[1][1] = 2.*n/(t-b); */
|
|
/* M[1][0] = M[1][2] = M[1][3] = 0.f; */
|
|
|
|
/* M[2][0] = (r+l)/(r-l); */
|
|
/* M[2][1] = (t+b)/(t-b); */
|
|
/* M[2][2] = -(f+n)/(f-n); */
|
|
/* M[2][3] = -1.f; */
|
|
|
|
/* M[3][2] = -2.f*(f*n)/(f-n); */
|
|
/* M[3][0] = M[3][1] = M[3][3] = 0.f; */
|
|
/* } */
|
|
/* static inline void mat4_ortho(mat4 M, float l, float r, float b, float t, float n, float f) */
|
|
/* { */
|
|
/* M[0][0] = 2.f/(r-l); */
|
|
/* M[0][1] = M[0][2] = M[0][3] = 0.f; */
|
|
|
|
/* M[1][1] = 2.f/(t-b); */
|
|
/* M[1][0] = M[1][2] = M[1][3] = 0.f; */
|
|
|
|
/* M[2][2] = -2.f/(f-n); */
|
|
/* M[2][0] = M[2][1] = M[2][3] = 0.f; */
|
|
|
|
/* M[3][0] = -(r+l)/(r-l); */
|
|
/* M[3][1] = -(t+b)/(t-b); */
|
|
/* M[3][2] = -(f+n)/(f-n); */
|
|
/* M[3][3] = 1.f; */
|
|
/* } */
|
|
/* static inline void mat4_perspective(mat4 m, float y_fov, float aspect, float n, float f) */
|
|
/* { */
|
|
/* /\* NOTE: Degrees are an unhandy unit to work with. */
|
|
/* * linmath.h uses radians for everything! *\/ */
|
|
/* float const a = 1.f / tan(y_fov / 2.f); */
|
|
|
|
/* m[0][0] = a / aspect; */
|
|
/* m[0][1] = 0.f; */
|
|
/* m[0][2] = 0.f; */
|
|
/* m[0][3] = 0.f; */
|
|
|
|
/* m[1][0] = 0.f; */
|
|
/* m[1][1] = a; */
|
|
/* m[1][2] = 0.f; */
|
|
/* m[1][3] = 0.f; */
|
|
|
|
/* m[2][0] = 0.f; */
|
|
/* m[2][1] = 0.f; */
|
|
/* m[2][2] = -((f + n) / (f - n)); */
|
|
/* m[2][3] = -1.f; */
|
|
|
|
/* m[3][0] = 0.f; */
|
|
/* m[3][1] = 0.f; */
|
|
/* m[3][2] = -((2.f * f * n) / (f - n)); */
|
|
/* m[3][3] = 0.f; */
|
|
/* } */
|
|
/* static inline void mat4_look_at(mat4 m, vec3 eye, vec3 lookat, vec3 up) */
|
|
/* { */
|
|
/* /\* Adapted from Android's OpenGL Matrix.java. *\/ */
|
|
/* /\* See the OpenGL GLUT documentation for gluLookAt for a description *\/ */
|
|
/* /\* of the algorithm. We implement it in a straightforward way: *\/ */
|
|
|
|
/* /\* TODO: The negation of of can be spared by swapping the order of */
|
|
/* * operands in the following cross products in the right way. *\/ */
|
|
/* vec3 f; */
|
|
/* vec3_sub(f, lookat, eye); */
|
|
/* vec3_norm(f, f); */
|
|
|
|
/* vec3 s; */
|
|
/* vec3_mul_cross(s, f, up); */
|
|
/* vec3_norm(s, s); */
|
|
|
|
/* vec3 t; */
|
|
/* vec3_mul_cross(t, s, f); */
|
|
|
|
/* m[0][0] = s[0]; */
|
|
/* m[1][0] = s[1]; */
|
|
/* m[2][0] = s[2]; */
|
|
|
|
/* m[0][1] = t[0]; */
|
|
/* m[1][1] = t[1]; */
|
|
/* m[2][1] = t[2]; */
|
|
|
|
/* m[0][2] = -f[0]; */
|
|
/* m[1][2] = -f[1]; */
|
|
/* m[2][2] = -f[2]; */
|
|
|
|
/* m[0][3] = 0.f; */
|
|
/* m[1][3] = 0.f; */
|
|
/* m[2][3] = 0.f; */
|
|
|
|
/* m[3][0] = -vec3_mul_inner(s, eye); */
|
|
/* m[3][1] = -vec3_mul_inner(t, eye); */
|
|
/* m[3][2] = vec3_mul_inner(f, eye); */
|
|
/* m[3][3] = 1.f; */
|
|
|
|
/* //mat4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); */
|
|
/* } */
|
|
|
|
/* typedef float quat[4]; */
|
|
/* static inline void quat_identity(quat q) */
|
|
/* { */
|
|
/* q[0] = q[1] = q[2] = 0.f; */
|
|
/* q[3] = 1.f; */
|
|
/* } */
|
|
/* static inline void quat_add(quat r, quat a, quat b) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* r[i] = a[i] + b[i]; */
|
|
/* } */
|
|
/* static inline void quat_sub(quat r, quat a, quat b) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* r[i] = a[i] - b[i]; */
|
|
/* } */
|
|
/* static inline void quat_mul(quat r, quat p, quat q) */
|
|
/* { */
|
|
/* /\* vec3 w; *\/ */
|
|
/* /\* vec3_mul_cross(r, p, q); *\/ */
|
|
/* /\* vec3_scale(w, p, q[3]); *\/ */
|
|
/* /\* vec3_add(r, r, w); *\/ */
|
|
/* /\* vec3_scale(w, q, p[3]); *\/ */
|
|
/* /\* vec3_add(r, r, w); *\/ */
|
|
/* /\* r[3] = p[3]*q[3] - vec3_mul_inner(p, q); *\/ */
|
|
|
|
/* r[0] = (p[3] * q[0]) + (p[0] * q[3]) + (p[1] * q[2]) - (p[2] * q[1]); */
|
|
/* r[1] = (p[3] * q[1]) + (p[1] * q[3]) + (p[2] * q[0]) - (p[0] * q[2]); */
|
|
/* r[2] = (p[3] * q[2]) + (p[2] * q[3]) + (p[0] * q[1]) - (p[1] * q[0]); */
|
|
/* r[3] = (p[3] * q[3]) - (p[0] * q[0]) - (p[1] * q[1]) - (p[2] * q[2]); */
|
|
/* } */
|
|
/* static inline void quat_scale(quat r, quat v, float s) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* r[i] = v[i] * s; */
|
|
/* } */
|
|
/* static inline float quat_inner_product(quat a, quat b) */
|
|
/* { */
|
|
/* float p = 0.f; */
|
|
/* int i; */
|
|
/* for(i=0; i<4; ++i) */
|
|
/* p += b[i]*a[i]; */
|
|
/* return p; */
|
|
/* } */
|
|
/* static inline void quat_conj(quat r, quat q) */
|
|
/* { */
|
|
/* int i; */
|
|
/* for(i=0; i<3; ++i) */
|
|
/* r[i] = -q[i]; */
|
|
/* r[3] = q[3]; */
|
|
/* } */
|
|
/* static inline void quat_rotate(quat r, float angle, vec3 axis) { */
|
|
/* vec3 v; */
|
|
/* vec3_scale(v, axis, sinf(angle / 2.f)); */
|
|
/* int i; */
|
|
/* for(i=0; i<3; ++i) */
|
|
/* r[i] = v[i]; */
|
|
/* r[3] = cosf(angle / 2.f); */
|
|
/* } */
|
|
/* #define quat_norm vec4_norm */
|
|
/* static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) */
|
|
/* { */
|
|
/* /\* */
|
|
/* * Method by Fabian 'ryg' Giessen (of Farbrausch) */
|
|
/* t = 2 * cross(q.xyz, v) */
|
|
/* v' = v + q.w * t + cross(q.xyz, t) */
|
|
/* *\/ */
|
|
/* vec3 t = {q[0], q[1], q[2]}; */
|
|
/* vec3 u = {q[0], q[1], q[2]}; */
|
|
|
|
/* vec3_mul_cross(t, t, v); */
|
|
/* vec3_scale(t, t, 2.f); */
|
|
|
|
/* vec3_mul_cross(u, u, t); */
|
|
/* vec3_scale(t, t, q[3]); */
|
|
|
|
/* vec3_add(r, v, t); */
|
|
/* vec3_add(r, r, u); */
|
|
/* } */
|
|
/* static inline float quat_pitch(quat q) */
|
|
/* { */
|
|
/* float result = atan2(2 * (q[1] * q[2] + q[3] * q[0]), q[3] * q[3] - q[0] * q[0] - q[1] * q[1] + q[2] * q[2]); */
|
|
/* return result; */
|
|
/* } */
|
|
|
|
/* static inline float quat_yaw(quat q) */
|
|
/* { */
|
|
/* float result = asin(-2 * (q[0] * q[2] - q[3] * q[1])); */
|
|
/* return result; */
|
|
/* } */
|
|
/* static inline float quat_roll(quat q) */
|
|
/* { */
|
|
/* float result = atan2(2 * (q[0] * q[1] + q[3] * q[2]), q[3] * q[3] + q[0] * q[0] - q[1] * q[1] - q[2] * q[2]); */
|
|
/* return result; */
|
|
/* } */
|
|
/* static inline void mat4_from_quat(mat4 M, quat q) */
|
|
/* { */
|
|
/* /\* float a = q[3]; *\/ */
|
|
/* /\* float b = q[0]; *\/ */
|
|
/* /\* float c = q[1]; *\/ */
|
|
/* /\* float d = q[2]; *\/ */
|
|
/* /\* float a2 = a*a; *\/ */
|
|
/* /\* float b2 = b*b; *\/ */
|
|
/* /\* float c2 = c*c; *\/ */
|
|
/* /\* float d2 = d*d; *\/ */
|
|
|
|
/* /\* M[0][0] = a2 + b2 - c2 - d2; *\/ */
|
|
/* /\* M[0][1] = 2.f*(b*c + a*d); *\/ */
|
|
/* /\* M[0][2] = 2.f*(b*d - a*c); *\/ */
|
|
/* /\* M[0][3] = 0.f; *\/ */
|
|
|
|
/* /\* M[1][0] = 2*(b*c - a*d); *\/ */
|
|
/* /\* M[1][1] = a2 - b2 + c2 - d2; *\/ */
|
|
/* /\* M[1][2] = 2.f*(c*d + a*b); *\/ */
|
|
/* /\* M[1][3] = 0.f; *\/ */
|
|
|
|
/* /\* M[2][0] = 2.f*(b*d + a*c); *\/ */
|
|
/* /\* M[2][1] = 2.f*(c*d - a*b); *\/ */
|
|
/* /\* M[2][2] = a2 - b2 - c2 + d2; *\/ */
|
|
/* /\* M[2][3] = 0.f; *\/ */
|
|
|
|
/* /\* M[3][0] = M[3][1] = M[3][2] = 0.f; *\/ */
|
|
/* /\* M[3][3] = 1.f; *\/ */
|
|
|
|
/* float xx = q[0] * q[0]; */
|
|
/* float xy = q[0] * q[1]; */
|
|
/* float xz = q[0] * q[2]; */
|
|
|
|
/* float yy = q[1] * q[1]; */
|
|
/* float yz = q[1] * q[2]; */
|
|
|
|
/* float zz = q[2] * q[2]; */
|
|
/* float wz = q[3] * q[2]; */
|
|
/* float wy = q[3] * q[1]; */
|
|
/* float wx = q[3] * q[0]; */
|
|
|
|
/* M[0][0] = 1 - 2 * (yy + zz); */
|
|
/* M[0][1] = 2 * (xy + wz); */
|
|
/* M[0][2] = 2 * (xz - wy); */
|
|
/* M[0][3] = 0; */
|
|
|
|
/* M[1][0] = 2 * (xy - wz); */
|
|
/* M[1][1] = 1 - 2 * (xx + zz); */
|
|
/* M[1][2] = 2 * (yz + wx); */
|
|
/* M[1][3] = 0.0; */
|
|
|
|
/* M[2][0] = 2 * (xz + wy); */
|
|
/* M[2][1] = 2 * (yz - wx); */
|
|
/* M[2][2] = 1 - 2 * (xx + yy); */
|
|
/* M[2][3] = 0.0; */
|
|
|
|
/* M[3][0] = M[3][1] = M[3][2] = 0.f; */
|
|
/* M[3][3] = 1.f; */
|
|
/* } */
|
|
|
|
/* static inline void mat4o_mul_quat(mat4 R, mat4 M, quat q) */
|
|
/* { */
|
|
/* /\* XXX: The way this is written only works for othogonal matrices. *\/ */
|
|
/* /\* TODO: Take care of non-orthogonal case. *\/ */
|
|
/* quat_mul_vec3(R[0], q, M[0]); */
|
|
/* quat_mul_vec3(R[1], q, M[1]); */
|
|
/* quat_mul_vec3(R[2], q, M[2]); */
|
|
|
|
/* R[3][0] = R[3][1] = R[3][2] = 0.f; */
|
|
/* R[3][3] = 1.f; */
|
|
/* } */
|
|
/* static inline void quat_from_mat4(quat q, mat4 M) */
|
|
/* { */
|
|
/* float r=0.f; */
|
|
/* int i; */
|
|
|
|
/* int perm[] = { 0, 1, 2, 0, 1 }; */
|
|
/* int *p = perm; */
|
|
|
|
/* for(i = 0; i<3; i++) { */
|
|
/* float m = M[i][i]; */
|
|
/* if( m < r ) */
|
|
/* continue; */
|
|
/* m = r; */
|
|
/* p = &perm[i]; */
|
|
/* } */
|
|
|
|
/* r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); */
|
|
|
|
/* if(r < 1e-6) { */
|
|
/* q[0] = 1.f; */
|
|
/* q[1] = q[2] = q[3] = 0.f; */
|
|
/* return; */
|
|
/* } */
|
|
|
|
/* q[0] = r/2.f; */
|
|
/* q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r); */
|
|
/* q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r); */
|
|
/* q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); */
|
|
/* } */
|
|
|
|
#endif
|
|
|